Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The intermetallic compound $\mathbf{M g}_{21} \mathbf{Z n}_{\mathbf{2 5}}$

Radovan Černý* and Guillaume Renaudin

Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
Correspondence e-mail: radovan.cerny@cryst.unige.ch

Received 23 July 2002
Accepted 2 October 2002
Online 22 October 2002
The crystal structure of the intermetallic compound henicosamagnesium pentacosazinc, $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$, has been determined by single-crystal X -ray diffraction. It is isomorphous with $\mathrm{Zr}_{21} \mathrm{Re}_{25}$ and deviates slightly from the rules that define the Frank-Kasper phases.

Comment

The intermetallic phase with a composition close to MgZn has been reported several times in the literature [Tarschisch, 1933; Clark \& Rhines, 1957; Clark et al., 1988; Khan, 1989; International Centre for Diffraction Data (ICDD), card 08-0206 (ICDD, 2001)], and its composition was reported as Zn -rich. The crystal structure of stoichiometric $\mathrm{MgZn}\left(\mathrm{P6}_{3} / m m c\right.$, $a=$ 10.66 and $c=17.16 \AA$) was given by Tarschisch (1933). It is derived from the hexagonal structure of the Frank-Kasper (Frank \& Kasper, 1958, 1959) phase of MgZn_{2} (Friauf, 1927) by a substitution of one Zn site by Mg and deformation of the coordination icosahedra. It was recognized later (McKeehan, 1935) that the structure has orthorhombic symmetry (Imm2, $a=5.33, b=17.16$ and $c=9.23 \AA$). However, short interatomic $\mathrm{Mg}-\mathrm{Zn}$ distances of $2.23 \AA$ were present in the structural model.

The phase reported by Khan (1989) has the nominal composition MgZn and its powder pattern was indexed with a hexagonal lattice $(a=25.69$ and $c=18.104 \AA)$, showing systematic extinctions corresponding to an R-centred cell. Another, very similar, powder pattern of a compound with the nominal composition MgZn was also reported, in the PDF-2 database (ICDD, 2001).

The compound $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$ presented here is isomorphous with $\mathrm{Zr}_{21} \operatorname{Re}_{25}$ (Cenzual et al., 1986). It deviates slightly from the rules that define the Frank-Kasper phases and does not precisely follow the equations given by Shoemaker \& Shoemaker (1986) that account for the numbers of each FrankKasper coordination polyhedron in the structure. Atom Mg 2 is coordinated by $\mathrm{Mg}_{4} \mathrm{Zn}_{12}$, atom Mg 1 by $\mathrm{Mg}_{7} \mathrm{Zn}_{7}$, atom Mg 3 by $\mathrm{Mg}_{7} \mathrm{Zn}_{8}$ and atom Mg 4 by $\mathrm{Mg}_{10} \mathrm{Zn}_{4}$. Atoms Zn 4 and Zn 6 are coordinated by $\mathrm{Mg}_{6} \mathrm{Zn}_{6}$, atoms $\mathrm{Zn} 1, \mathrm{Zn} 2$ and Zn 3 by $\mathrm{Mg}_{7} \mathrm{Zn}_{5}$, and atom Zn 5 by $\mathrm{Mg}_{8} \mathrm{Zn}_{4}$. The $\mathrm{Zn}-\mathrm{Zn}, \mathrm{Zn}-\mathrm{Mg}$ and $\mathrm{Mg}-\mathrm{Mg}$ distances are in the ranges 2.57-2.72, 2.95-3.18 and

Figure 1
One structural slab ($00 l$) of $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$ at $z \sim 0$, composed of the $\mathrm{Zn}_{6} \mathrm{Mg}_{6} \mathrm{Zn}_{6}$ and ${\mathrm{Zn} 3 \mathrm{Mg}_{7} \mathrm{Zn}_{5} \text { icosahedra (light grey) and the }}^{2}$ $\mathrm{Mg} 4 \mathrm{Mg}_{10} \mathrm{Zn}_{4}$ polyhedron (dark grey).
3.01-4.03 \AA, respectively. The crystal structure of $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$ can be constructed from ($00 l$) slabs (Fig. 1) that are repeated three times in the unit cell by R-centring.

In Cenzual et al. (1986), the coordination of Zr 4 (here Mg 4) was described as a $\mathrm{Zr}_{8} \mathrm{Re}_{4}$ icosahedron. If two additional Mg atoms at distances of $4.032 \AA$ from Mg 4 are added to the Mg 4 coordination icosahedron, we get an $\mathrm{Mg}_{10} \mathrm{Zn}_{4}$ coordination polyhedron, which is not of the Frank-Kasper type. However, we prefer this description because it fills all the available space in the structure (Fig. 1).

The calculated powder pattern of $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$ agrees better with that reported in the PDF-2 database (ICDD, 2001) than with that reported by Khan (1989). The cell parameters reported by Khan do not agree exactly with ours. The a parameter can be considered to be essentially the same as our value (no experimental errors are given by Khan). However, half the c parameter reported by Khan is significantly different from our value for the c parameter. No doubling of the c length was observed in our data. It is necessary to note that the experiment carried out by Khan was performed on rapidly cooled ribbons that were then annealed at low temperature (450 K); therefore, intermediate phases that were not in equilibrium cannot be excluded.

Experimental

A sample of nominal composition MgZn was melted by placing a compressed mixture of Mg powder (Strem Chemical, 99.8\%) and Zn powder (Fluka, p.a. 99.0\%) into a quartz ampoule, which was sealed under an argon pressure of $0.3 \mathrm{bar}\left(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\right)$ and annealed at 573 K for 1 d . The ingot $(1 \mathrm{~g})$ was crushed into several pieces and powdered under a protective argon atmosphere. In spite of melting losses of about $2.3 \mathrm{wt} \%$, the X-ray powder pattern indicated the

inorganic compounds

presence of mainly $\mathrm{Mg}_{21} \mathrm{Zn}_{25}$, with small amounts of $\mathrm{Mg}_{51} \mathrm{Zn}_{20}$ and MgZn_{2} as minor impurities. Several single crystals of suitable size for X-ray analysis were found in the crushed sample and were examined by the Laue method.

Crystal data

$\mathrm{Mg}_{21} \mathrm{Zn}_{25}$	Mo $K \alpha$ radiation
$M_{r}=2144.72$	Cell parameters from 2000
Trigonal, $R \overline{3} c$	\quad reflections
$a=25.7758(13) \AA$	$\theta=3-25^{\circ}$
$c=8.7624(6) \AA$	$\mu=17.85 \mathrm{~mm}^{-1}$
$V=5041.7(5) \AA^{3}$	$T=293 \mathrm{~K}$
$Z=6$	Irregular, metallic dark grey
$D_{x}=4.238 \mathrm{Mg} \mathrm{m}^{-3}$	$0.09 \times 0.07 \times 0.04 \mathrm{~mm}$

Data collection

φ oscillation scan
Absorption correction: analytical
(X-RED in IPDS;
Stoe \& Cie, 1999)
$T_{\text {min }}=0.363, T_{\text {max }}=0.455$
9789 measured reflections
1097 independent reflections
780 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.087 \\
& \theta_{\max }=25.9^{\circ} \\
& h=-31 \rightarrow 31 \\
& k=-31 \rightarrow 30 \\
& l=-10 \rightarrow 10 \\
& 200 \text { standard reflections } \\
& \text { frequency: } 10 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.032$

$$
\begin{gathered}
w=1 /\left[\left[^{2}\left(F_{o}^{2}\right)+(0.0371 P)^{2}\right]\right. \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.78 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.63 \mathrm{e}^{-3}
\end{gathered}
$$

1097 reflections
the mean $F^{2} / \sigma\left(F^{2}\right)$ value was 4.0 . In the third domain, 12064 reflections were measured and the mean $F^{2} / \sigma\left(F^{2}\right)$ value was 3.1. Only the data of the first domain were used for the structure solution and refinement. The R factor statistics show no systematic deviation of different reflection groups from the mean, whether dependent on $h k l$, $F_{\text {obs }}$ or $\sin (\theta) / \lambda$

Data collection: EXPOSE in IPDS (Stoe \& Cie, 1999); cell refinement: CELL in IPDS; data reduction: TWIN and X-RED in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1025). Services for accessing these data are described at the back of the journal.

References

Cenzual, K., Parthé, E. \& Waterstrat, R. M. (1986). Acta Cryst. C42, 261-266. Clark, J. B. \& Rhines, F. N. (1957). Trans. Metall. Soc. AIME, pp. 425-435.
Clark, J. B., Zabdyr, L. \& Moser, Z. (1988). Phase Diagrams of Binary Magnesium Alloys, edited by A. A. Nayeb-Hashemi \& J. B. Clark, pp. 353364. Metals Park, Ohio, USA: ASM International.

Dowty, E. (1993). ATOMS. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Frank, F. C. \& Kasper, J. C. (1958). Acta Cryst. 11, 184-190.
Frank, F. C. \& Kasper, J. C. (1959). Acta Cryst. 12, 483-499.
Friauf, J. B. (1927). Phys. Rev. 29, 35-40.
ICDD (2001). Card 08-0206 in PDF-2. International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA.
Khan, Y. (1989). J. Mater. Sci. 24, 963-973.
McKeehan, L. W. (1935). Z. Kristallogr. Teil A, 91, 501-503.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shoemaker, D. P. \& Shoemaker, C. B. (1986). Acta Cryst. B42, 3-11.
Stoe \& Cie (1999). X-RED (Version 1.19) and IPDS (Version 2.92). Stoe \& Cie, Darmstadt, Germany
Tarschisch, L. (1933). Z. Kristallogr. Teil A, 86, 423-438.

